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What we will
dISCUSS...

How much P Is in a (real and not so real) bacterium
and how little can they get by on, I.e., how low can
they go?

Homeostasis: How variable 1s bacterial C and P
content? How does a bacterium and a bacterial
community respond to changes in its their
environment?

The future of Phosphorus?
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Human perturbations to
different biogeochemical
cycles

Table 2. Examples of human intervention in the global biogeochemical cycles of carbon, nitrogen,
phosphorus, sulfur, water, and sediments. Data are for the mid-1900s.

Magnitude of flux (millions

of metric tons per year) % change due to

Element per year) o SReliEs R
hurman activities

MNatural Anthropogenic

Terrestrial respiration and decay CO, 61,000
Fossil fuel and land use CO, 8,000

Matural biological fixation 120

Fixation owing to rice cultivation, 140
combustion of fossil fuels, and
production of fertilizer

Chemical weathering
Mining

Matural emissions to atmosphere at
Earth's surface
Fossil fuel and biomass burning
emissions
O and H  Precipitation over land
(as H,O) Global water usage
Sediments Long-term preindustrial river
suspended load
Modern river suspended load +200

Falkowski, P. G., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P.,
Linder, S., Mackenzie, F. T., Moore, B. I., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V. & Steffen, W. (2000).
The global carbon cycle: a test of our knowlege of Earth as a system. Science 290, 291-296.




Ecological .
stoichiometry

How organisms deal with
variability in resource
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Fia. 3. The Biochemical Cyele, Numbers represent quantities of respective ele-
ments present in the atmosphere, the ocean, and the sedimentary rocks, relative to
the number of atoms of phosphorus in the ocean,

osmotrophs vs. phagotrophs,
Redfield 1958 heterotrophs vs. autotrophs
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What determines the biomass
composition of microbial
communities?

Growth rate (the 'growth rate
hypothesis')

Substrate stoichiometry
Temperature

Community composition (prokaryotic vs.
eukaryotic; unicellular vs. multi-cellular,
autotrophs vs. heterotrophs)



Growth rate, RNA and

high growth low growth
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Growth rate
High P content Low P content

Low C:P & N:P High C:P & N:P

Growth rate determines the stoichiometry of a microbe




Fercentage dry weight
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P and growth: The growth rate
hypothesis
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...where's the rest of

Makino et al. 2003: Elser et al. 2003 the P?



Substrate stoichiometry and
homeostasis

P sufficiency
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How much P Is there
In a bacterium?....
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...and why should we
care

Positive
feedback
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..How much P does a bacterium

have? We used to think a lot...
Redfield ratio 106C: 16N: 1P

Most studies assume that bacteria are P-rich
with C:P ratios about 50:1

Jut are they really that nutrient rich? Bratbak 1985

TABLE 1. Comparison of cell composition, carbon per cell. estimates of cell velume obtained with different methods, and carbon per
umit of estimated cell volume for six different culiures of bactena

Call vol (ue®) by: C per unit of cell vol (107" g of C
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P. putida ; 100:22:6.2 0.28 0.29 ND* . 4.6
F. putida 1m0 1%9:5.1 e 0.66 0.71 0.74 ’ 2.6
P. purida 10d:18:0.2 0.57 (63 .66 4. 5.5
Mixed ; 100:21:13 A 0.11 0.19 ND ] 8.0
Mixed 1My:15:4.9 0,30 (.48 MDD 7.2
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Photo-
graphs

Mixed 10d:16:1.8 0.27 0.55 ND b 1.1
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Chemostats




Where's the P? (lake
communities)

Unaccounted P
HPoly P
WENA-P
EDNA-P

Lipid P

Protein P
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Growth rates 0.2-0.3 per day
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How low can they go
(and how flexible are
they)’?




How high can the C:P
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How low can they go? Can a
bacterium have P content of 0.02%
dw?

4.5 All of these data are

4 above the detection limit
of 99% confidence.

3.5 .
& .
@3 -
Table 1. Bulk intracellular elemental profile of strain GFAJ1.*
(% drv weight)

Condition (n) As [ As:P

+As/-P(8) 0.19 +£0.25 0,019+ 0.0009 1.3
-As/+P (4) 0.001 = 0.0005 0.54 +0.21 0.002

*Cells grown and prepared with trace metal clean techniques (/ /). Number in parentheses indicates replicate samples
analyzed.
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Homeostasis

How flexible are
bacteria?
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Heterotrophic bacteria are

the most stoichiometrically

diverse organisms on the
planet!
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Homeostasis and ecological

4
DT

theory

r-Selected 34,
Competitive Specialists 2,
Velocity Strategy -,
Strong Homeostasis,
‘Homeostoichs’ ©

K-Selected 34,
Stress-Tolerant 2,
Affinity-Adapted -2,

)

‘Heterostoichs’ ¢

L max high low

‘Storage capacity’ small large
Nutrient content high low / variable
Nutrient requirement high low

Strength of Regulation (H)

high

low

Biomass C:X

low / less variable

high / variable

TER

low

high

I Crowley 1975; 2 Grime 1977; ? Jannasch 1974; ¢ MacArthur and Wilson 1967;

>Sommer 1985; ¢ Jim Cotner




Homeostasis and communities:
Do P rich conditions select for

homeqQ

Black-Initial assemblage
Red-High P
Blue-Low P

Lake Owasso, Sep. 2009
interaction p=0.05

Lake Owasso, May. 2010
interaction p=0.05

Lake F.E., Aug. 2010
interaction p=0.05

316 1000

Reszource C:P

ct. 2009

Lake Superior, Jun. 20082
interaction p=0.05

Christmas Lake, Aug. :
interaction p<=

100 316 1000 3182

Resource C:P



-~ Running out of P

cal global sources of phosphorus fartilizers {1803-2000|
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Conclusions

® bacteria are extremely stoichiometrically
flexible with respect to P and they don't need
a lot of it

there are two main stoichiometric ‘behaviors'
that parallel r and K-selected species and our

evidence suggests that 'K' selected species
rule the day

® we're running out of P but we also have too
much, I.e., eutrophication
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NOon-nomoestasis:.
Using carbon to get
phosphorus

: r', w [
Thingstad et al. 2005
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Morphometric changes under P
_limitation
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More Info on the As:P
controversy

http.//www.sciencemag.org/content/332/6034/1163
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